Abstract

Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

Highlights

  • An increasing number of recent studies point out the prevalence of mixotrophic phytoplankton in natural communities[5,6]

  • The occurrence of mixotrophs under these conditions is taken to indicate that they have an advantage over photoautotrophic phytoplankton by obtaining limiting nutrients through phagotrophy, much in the way carnivorous plants and stony corals thrive in oligotrophic environments due to the combination of photosynthesis with heterotrophic ingestion[2]

  • Heterotrophic bacteria are characterized by low C:N and C:P ratios[15], making them a attractive prey for mixotrophs which may cover their energy demand by photosynthesis but their nutrient requirements by phagotrophy

Read more

Summary

Introduction

An increasing number of recent studies point out the prevalence of mixotrophic phytoplankton in natural communities[5,6]. A large compilation of freshwater phytoplankton traits derived from observational data suggests that the growth rates of strictly photoautotrophic representatives (chlorophyceae: Scenedesmus, Chlamydomonas; bacillariophyceae: Fragilaria, Cyclotella) clearly exceed those of typical mixotrophs (chrysophyceae: Dinobryon, Ochromonas; haptophyta: Chrysochromulina; dinophyta: Peridinium, Gymnodinium; Table S1 in[20]). From that it appears that the niche of mixotrophs is mostly defined by maintaining positive growth at simultaneously low prey and nutrient concentrations. We expect the ratio mixotrophs: heterotrophs among protist consumers to increase with light

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.