Poplars are crucial for timber supply and ecological protection in China. Enhancing the growth of poplar plantations and improving soil fertility in arid, and semi-arid poor soil regions are key aspects of sustainable forest management. Fertilization (FTL) and drip irrigation (DI) are among the most widely used methods globally for increasing yield and soil productivity. This study conducted field experiments on FTL and DI in a 10-year-old Populus × canadensis ‘Zhongliao 1’ (cultivation varieties of P. canadensis in northern China) plantation. DI limits were set according to soil moisture at 60% (S1), 70% (S2), and 80% (S3) of field capacity; nitrogen FTL rates were set at 100% of the baseline fertilization amount (100% BFA, N 643.20 g·year−1, P 473.37 g·year−1, and K 492.29 g·year−1) (F1), 70% BFA (F2), 130% BFA (F3), and 160% BFA (F4). The treatments of drip irrigation and fertigation (DIF) were H1 (100% BFA, 60% FC), H2 (100% BFA, 80% FC), H3 (160% BFA, 60% FC), and H4 (160% BFA, 80% FC), along with a control group (CK) without any management, totaling 12 experimental combinations. The results showed that the H4 had the most significant promoting effect on the height, DBH, and volume increments. All treatments had little effect on the soil bulk density of the plantation but significantly impacted soil capillary porosity and pH. Compared to DI, soil nutrient and organic matter content were more sensitive to FTL. Appropriate FTL and DI can increase soil sucrase activity. Soil urease activity tended to increase with higher FTL rates, and higher DI levels also positively influenced urease activity. Excessive or insufficient soil moisture and nutrients negatively impacted soil cellulase and catalase activities. Correlation analysis revealed no significant correlation between the growth of P. × canadensis ‘Zhongliao 1’ and soil nutrient content, but significant or highly significant correlations existed between growth and soil porosity and related enzyme activities. Comprehensive evaluation using a membership function indicated that high FTL levels (F4) were more conducive to the simultaneous improvement of the growth and soil fertility of the plantation, followed by H4 and F1, suggesting that high FTL is the key factor affecting the growth of 10-year-old P. × canadensis ‘Zhongliao 1’ plantations and the restoration of stand productivity, with moisture being secondary.