The multifaceted, multivendor-based global design supply chain induces hardware threats of intellectual property (IP) piracy for modern computing and electronic systems. Current hardware watermarking techniques fall short either in terms of watermark strength (size of covert constraints generated) or number of security layers/variables involved in the security constraints generation process. This paper presents a novel approach for high level synthesis (HLS) watermarking by bio-mimicking DNA fingerprint profiling to counter hardware IP piracy. The proposed approach effectively captures the vital DNA fingerprint profiling phases such as DNA sequencing, DNA fragmentation, fragment replication, DNA ligase, etc. and bio-mimics them to generate a digital watermarking framework. The presented approach has been demonstrated on convolutional layer and JPEG compression-decompression (CODEC) algorithms that are widely used in several medical and machine learning applications. The proposed approach has been thoroughly compared with several state-of-the-art approaches. The proposed approach depicts superior security in the probability of coincidence of up to ~ 104 and tamper tolerance of up to ~ 10368 at 0% overhead as compared to the prior approaches.