Due to the complex multiscale interaction between intense turbulence and relatively weak flames, turbulent premixed flames in the thin and broken reaction zones regimes exhibit strong finite-rate chemistry and strain effects and are hence challenging to model. In this work, a laboratory premixed jet flame in the broken reaction zone, which has recently been studied using direct numerical simulation (DNS), is modeled using a large eddy simulation (LES)/dynamic thickened flame (DTF) approach with detailed chemistry. The presence of substantial flame thickening due to strong turbulence-chemistry interactions, which can be characterized by a high Karlovitz number (Ka), requires the DTF model to thicken the flame in an adaptive way based on the local resolution of flame scales. Here, an appropriate flame sensor and strain-sensitive flame thickness are used to automatically determine the thickening location and thickening factor, respectively. To account for finite-rate chemistry and strain effects, the chemistry is described in two different ways: (1) detailed chemistry denoted as full transport and chemistry (FTC), and (2) tabulated chemistry based on a strained premixed flamelet (SPF) model. The performance of the augmented LES/DTF approach for modeling the high Ka premixed flame is assessed through detailed a posteriori comparisons with DNS of the same flame. It is found that the LES/DTF/FTC model is capable of reproducing most features of the high Ka turbulent premixed flame including accurate CO and NO prediction. The LES/DTF/SPF model has the potential to capture the impact of strong turbulence on the flame structure and provides reasonable prediction of pollutant emissions at a reasonable computational cost. In order to identify the impact of aerodynamic strain, the turbulent flame structure is analyzed and compared with unstrained and strained premixed flamelet solutions. The results indicate that detailed strain effects should be considered when using tabulated methods to model high Ka premixed flames.