Buildings are often constructed on a continuous layer of vibration isolation to reduce vibrations and structure-borne noise. There are many vibration isolation products (rubber mats, textiles, polymer foams), but none fulfils all requirements in terms of load-bearing capacity, performance, and cost. In previous work, we have shown that silica aerogel particle beds display a low resonance frequency and correspondingly high vibration isolation performance. Loose silica aerogel granules are not a practical vibration isolation solution. In order to guide the future development of dedicated vibration isolation products based on aerogels, we determine the vibro-acoustic properties of a variety of existing commercial and R&D stage mesoporous composites, that have been developed for thermal insulation applications. The sample set includes monolithic aerogels (polyurethane), silica aerogel composites (aerogel – fibers, aerogel impregnated foams, aerogel bound with polymer foam), glued fumed silica-fiber boards, and nanoporous polymer foam composite boards. The silica aerogel and fumed silica composites display low resonance frequencies (down to 8 Hz for 40 mm, strongly dependent on composite type) and a low dynamic stiffness and loss factor over a wide range of static loads. The polymer aerogel, nanoporous foam and polymer-bound silica aerogel granule board all display higher resonance frequencies, consistent with their higher static stiffness. Although optimized for thermal insulation rather than vibration isolation, many of the tested silica aerogel and fumed silica composites are competitive with the best vibration isolation products on the market in terms of vibration isolation performance. The diversity of materials tested informs on which approaches, materials, and materials combinations are most promising to target vibration isolation.
Read full abstract