BackgroundVarious studies have shown that the type of intensity measure affects training intensity distribution (TID) computation. These conclusions arise from studies presenting data from meso- and macrocycles, while microcycles, e.g., high-intensity interval training shock microcycles (HIIT-SM) have been neglected so far. Previous literature has suggested that the time spent in the high-intensity zone, i.e., zone 3 (Z3) or the “red zone”, during HIIT may be important to achieve improvements in endurance performance parameters. Therefore, this randomized controlled trial aimed to compare the TID based on running velocity (TIDV), running power (TIDP) and heart rate (TIDHR) during a 7-day HIIT-SM. Twenty-nine endurance-trained participant were allocated to a HIIT-SM consisting of 10 HIIT sessions without (HSM, n = 9) or with (HSM + LIT, n = 9) additional low-intensity training or a control group (n = 11). Moreover, we explored relationships between time spent in Z3 determined by running velocity (Z3V), running power (Z3P), heart rate (Z3HR), oxygen uptake (Z3V˙O2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext{Z}}{3_{\\dot{\ ext{V}}\ ext{O}_2}}$$\\end{document}) and changes in endurance performance.ResultsBoth intervention groups revealed a polarized pattern for TIDV (HSM: Z1: 38 ± 17, Z2: 16 ± 17, Z3: 46 ± 2%; HSM + LIT: Z1: 59 ± 18, Z2: 14 ± 18, Z3: 27 ± 2%) and TIDP (Z1: 50 ± 8, Z2: 14 ± 11, Z3: 36 ± 7%; Z1: 62 ± 15, Z2: 12 ± 16, Z3: 26 ± 2%), while TIDHR (Z1: 48 ± 13, Z2: 26 ± 11, Z3: 26 ± 7%; Z1: 65 ± 17, Z2: 22 ± 18, Z3: 13 ± 4%) showed a pyramidal pattern. Time in Z3HR was significantly less compared to Z3V and Z3P in both intervention groups (all p < 0.01). There was a time x intensity measure interaction for time in Z3 across the 10 HIIT sessions for HSM + LIT (p < 0.001, pη2 = 0.30). Time in Z3V and Z3P within each single HIIT session remained stable over the training period for both intervention groups. Time in Z3HR declined in HSM from the first (47%) to the last (28%) session, which was more pronounced in HSM + LIT (45% to 16%). A moderate dose–response relationship was found for time in Z3V and changes in peak power output (rs = 0.52, p = 0.028) as well as time trial performance (rs = − 0.47, p = 0.049) with no such associations regarding time in Z3P, Z3HR, and Z3V˙O2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext{Z}}{3_{\\dot{\ ext{V}}\ ext{O}_2}}$$\\end{document}.ConclusionThe present study reveals that the type of intensity measure strongly affects TID computation during a HIIT-SM. As heart rate tends to underestimate the intensity during HIIT-SM, heart rate-based training decisions should be made cautiously. In addition, time in Z3V was most closely associated with changes in endurance performance. Thus, for evaluating a HIIT-SM, we suggest integrating a comprehensive set of intensity measures.Trial Registration Trial register: Clinicaltrials.gov, registration number: NCT05067426.
Read full abstract