Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios. These PPTs allow for remote and programmable manipulation of objects with diverse materials (polymer, inorganic, and metal), different phases (bubble, liquid, and solid), and various geometries (sphere, cuboid, and wire). Furthermore, the PPT is not only adaptable to high-conductivity media but also applicable to both portable macroscopic manipulation platforms and microscopic manipulation systems, enabling cross-scale manipulations for solid objects, liquid droplets, and biological samples. The high-level flexibility and adaptability of the PPT extend to broad applications in manipulating hydrogel robots, sorting particles, assembling cells, and stimulating cells. By surpassing the limitations of conventional tweezers, the PPT bridges the gap between macroscopic and microscopic manipulations, offering a revolutionary tool in robotics, colloidal science, biomedical fields, and beyond.
Read full abstract