Afacile scalable approach ispresented for the rational design of multidimensional, multilayered sand-clock-like UCNPs (denoted as UCCKs) bounded with high index facets, with a tunable Nd3+ content, and without a template or multiple complicated reaction steps. This was achieved using the seed-mediated growth and subsequent longitudinal direction epitaxial growth with the assistance of oleic acid and NH4F. The as-formed UCCKs composed of aninner layer (NaYF4:Yb,Er,Ca), anintermediate layer (NaYF4:Yb,Ca), and anouter layer (NaNdF4:Yb,Ca). The outer shell, enriched with Nd3+ sensitizer, augmented the near-infrared (NIR) photon absorption, whereasthe intermediate shell, enriched with Yb3+, acted as a bridge for energy transfer from Nd3+ to Er3+ emitter in the inner core alongside with precluding any deleterious energy back-transfer from Er3+ or quenching effect from Nd3+. These unique structural and compositional properties of UCCKs endowed the UCL intensity of UCCKs by 22 and 10 times higher than that of hexagonal UCNP core (NaYF4:Yb,Er,Ca) and hexagonal UCNP core-shell (NaYF4:Yb,Er,Ca@NaYF4:Yb,Ca), respectively. Intriguingly, the UCL intensity increased significantly with increasing the content of Nd3+ in the outer shell. The silica-coated UCCKs were used as excellent long-term luminescence probes for the in vitro bioimaging without any noteworthy cytotoxicity. The presented approach may pave the road for controlling the synthesis of multidimensional UCCKs for various applications. Graphical abstract We developed novel multidimensional multilayered sand-clock-like upconversion nanostructures composed of a spherical inner core (NaYF4:Yb,Er,Ca), hexagonal intermediate shell (NaYF4:Yb,Ca) and two up-down outer shell (NaNdF4:Yb,Ca) with controllable Nd3+ as anefficient and safe probe for bioimaging applications without any quenching effect.
Read full abstract