Abstract

This study reveals atomic-scale observations of the high temperature stability of platinum nanoparticles deposited on pristine graphene oxide (PtNPs/GO) and platinum nanoparticles deposited on water-etched graphene oxide (PtNPs/GO-H2O) as two representative catalyst systems for dehydrogenation. With the aid of in-situ transmission electron microscopy (TEM), these two kinds of catalysts can be examined at actual working temperatures up to 800 °C, and notably, PtNPs/GO-H2O exhibits the higher temperature stability even at 700 °C. The statistical data of in-situ time-lapsed TEM images demonstrate the size variations of the sintering Pt nanoparticles which are in accordance with the Ostwald ripening process. We further discover the tendency towards the preferential exposure of high-index Pt nanocrystal facets (higher surface energy sides) for the PtNPs/GO under thermal treatment from 25 °C to 400 °C, which leads to accelerate the nanoparticle aggregations, providing microscopic evidence of the catalyst instability at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.