Groundwater plays a very important role for all living beings. It is decisive to have a scientific understanding of groundwater management since, with careful use and replenishment, groundwater may help solve issues. The distribution of groundwater tables, slope, land-form, drainage pattern, lithology, topography, geological structure, fracturing density, opening and connectivity of fractures, secondary porosity, and landuse landcover all affect the occurrence and efficiency of groundwater in an aquifer system. An essential tool for assessing, tracking and protecting groundwater resources is the integration of geospatial techniques such as Remote Sensing and Geographic Information System for the identification of groundwater potential zones. This study aims to find the groundwater potential zones using Analytical Hierarchy Process (AHP) and managing the resources by creating different thematic layers such as rainfall, geology, geomorphology, drainage density, soil, slope, lineament and landuse landcover (LULC) of the Kuzhithuraiyar sub basin of the Kodayar river in Tamilnadu using the application of geospatial technologies. The thematic maps for all the thematic layers have been prepared using tools such as Interpolation, contour lines, Classification in ArcGIS 10.8. Theme weight and class rank were assigned to different thematic layers in weighed overlay analysis. The results were validated through field work and groundwater potential map was created. The groundwater potential zonation mapping was done by the overlay analysis in ArcGIS 10.8 software. The obtained map was classified into four categories namely very high groundwater potential zone, high groundwater potential zone, medium groundwater potential zone and low groundwater potential zone. The North Eastern part of the basin is considered as low groundwater potential zone while the Southern portion has high groundwater potentiality. The low groundwater potential zone covers an area of 10.58 sq.km and high groundwater potential zone covers an area of about 388.37sq.km.This study will be helpful for useful groundwater management for different tenacities.
 
 
Read full abstract