Mitochondrial autophagy and inflammatory response involves in diabetes. This study mainly explores the role of Silent Information Regulator (SIRT1) in pancreatic β-cells under high glucose conditions and related mechanism. Pancreatic β cells was cultured in a high-glucose environment with SRT1720 and EX527 respectively to define activation group and inhibition group followed by analysis of SIRT1, P-FOXO1, FOXO1, LC3, ATG5, PINK, Parkin, Mfn1, Mfn2, Fis1, IL-6, TNF-α, NLRP3 protein and mRNA expression by qRT-PCR, Western blot and fluorescent probe technology. Compared with control group, SIRT1 protein and mRNA expression in the high glucose group was significantly reduced. Activation group had highest protein and mRNA expression of SIRT1 P-FOXO1, FOXO1, Mfn1, Mfn2, Fis1, PINK, Parkin and mitochondrial membrane potential followed by blank group and inhibition group.SIRT1 secretion by pancreatic β-cells under high glucose environment is reduced. After activating SIRT1, mitochondrial autophagy decreased significantly and inflammatory response is significantly alleviated, indicating that SIRT1 might be used as a therapeutic target.
Read full abstract