In this work, filtration studies were performed with particles of soft or super-soft nature, made from polyacrylamide copolymers, and hard polystyrene reference particles, all having average diameters between 180 and 200 nm, at relatively high particle concentrations and different transmembrane pressures under stirred and non-stirred dead-end filtration conditions in order to evaluate the separation and fouling behavior of a commercially available high-flux microfiltration membrane (experimentally determined barrier pore diameter 210 nm). In order to identify the underlying fouling processes the dependencies of the flux on cumulative volume or time were analyzed in the frame of established models. It was found that low transmembrane pressures of 0.1 bar lead to immediate filter cake formation, that facilitates a high retention of the particles and leads to less fouling that cannot be removed by external washing. Medium to high pressures (0.5–2.0 bar) resulted in a pronounced penetration of microgel particles into the membrane structure and pore blocking in the first phase (I) of the filtration, before entering the cake formation phase (II); the particle rejection in phase I was lower and the extent of fouling remaining after washing was larger. Super-soft microgels showed a significantly more pronounced pore blocking phase (I), compared to their soft counterparts or the hard sphere reference particles. The results of the study yield deeper insights into retention and blocking mechanisms during filtrations of deformable microgels as model colloids with a benchmark sterile filtration membrane. This is relevant for purification of such polymeric materials after their synthesis or for the development of test systems mimicking the removal of microorganisms by sterile filtration.
Read full abstract