Abstract

Developing a porous membrane to effectively remove sub-micron sized contaminants from water while maintaining a high permeate flux with energy-saving properties is of great significance but extremely challenging. Herein, we describe a feasible strategy to create a bacterial cellulose (BC) membrane with a continuous Voronoi-net structure via combining evaporation-induced self-assembly with chemical cross-linking. This presented approach allows micro-length BC nanofibers to self-assemble in the electrospun polyacrylonitrile (PAN) nanofibrous frameworks to form stable and continuous Voronoi-like nanonets, endowing the obtained membrane with small pore size, stable pore structure, high porosity, favourable interconnectivity, and ultrathin membrane thickness. By virtue of these unique structural advantages and superhydrophilicity from BC Voronoi-like nanonets, the resulting membrane exhibits integrated performances of high rejection efficiency (>99.63%) for 0.3 μm TiO2 microparticles, robust permeate flux (5541 L m-2 h-1) at a low driving pressure of 20 kPa, intriguing reusability, excellent bacterial rejection efficiency (log reduction value of 8.2), and promising antifouling function to bacteria. It is expected that the proposed strategy can provide a facile approach for the development of next-generation high performance microfiltration membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.