1.1 Photodynamic Therapy and Imaging The purpose of this review is to present the current state of the role of imaging in photodynamic therapy (PDT). In order for the reader to fully appreciate the context of the discussions embodied in this article we begin with an overview of the PDT process, starting with a brief historical perspective followed by detailed discussions of specific applications of imaging in PDT. Each section starts with an overview of the specific topic and, where appropriate, ends with summary and future directions. The review closes with the authors’ perspective of the areas of future emphasis and promise. The basic premise of this review is that a combination of imaging and PDT will provide improved research and therapeutic strategies. PDT is a photochemistry-based approach that uses a light-activatable chemical, termed a photosensitizer (PS), and light of an appropriate wavelength, to impart cytotoxicity via the generation of reactive molecular species (Figure 1a). In clinical settings, the PS is typically administered intravenously or topically, followed by illumination using a light delivery system suitable for the anatomical site being treated (Figure 1b). The time delay, often referred to as drug-light interval, between PS administration and the start of illumination with currently used PSs varies from 5 minutes to 24 hours or more depending on the specific PS and the target disease. Strictly speaking, this should be referred to as the PS-light interval, as at the concentrations typically used the PS is not a drug, but the drug-light interval terminology seems to be used fairly frequently. Typically, the useful range of wavelengths for therapeutic activation of the PS is 600 to 800 nm, to avoid interference by endogenous chromophores within the body, and yet maintain the energetics necessary for the generation of cytotoxic species (as discussed below) such as singlet oxygen (1O2). However, it is important to note that photosensitizers can also serve as fluorescence imaging agents for which activation with light in the 400nm range is often used and has been extremely useful in diagnostic imaging applications as described extensively in Section 2 of this review. The obvious limitation of short wavelength excitation is the lack of tissue penetration so that the volumes that are probed under these conditions are relatively shallow. Open in a separate window Figure 1 (A) A schematic representation of PDT where PS is a photoactivatable multifunctional agent, which, upon light activation can serve as both an imaging agent and a therapeutic agent. (B) A schematic representation of the sequence of administration, localization and light activation of the PS for PDT or fluorescence imaging. Typically the PS is delivered systemically and allowed to circulate for an appropriate time interval (the “drug-light interval”), during which the PS accumulates preferentially in the target lesion(s) prior to light activation. In the idealized depiction here the PS is accumulation is shown to be entirely in the target tissue, however, even if this is not the case, light delivery confers a second layer of selectivity so that the cytotoxic effect will be generated only in regions where both drug and light are present. Upon localization of the PS, light activation will result in fluorescence emission which can be implemented for imaging applications, as well as generation cytotoxic species for therapy. In the former case light activation is achieved with a low fluence rate to generate fluorescence emission with little or no cytotoxic effect, while in the latter case a high fluence rate is used to generate a sufficient concentration of cytotoxic species to achieve biological effects.
Read full abstract