Utilizing alternative energy sources to fossil fuels has remained a significant issue for humanity. In this context, efficient earth-abundant bifunctional catalysts for water splitting and energy storage technologies like hybrid supercapacitors have become essential for achieving a sustainable future. Herein, CoCr-LDH@VNiS2 was synthesized by hydrothermal synthesis. The CoCr-LDH@VNiS2 catalyst entails 1.62 V cell voltage to reach the current density of 10 mA cm-2 for overall water splitting. The CoCr-LDH@VNiS2 electrode illustrates a high electrochemical specific capacitance (Csp) of 1380.9 F g-1 at a current density of 0.2 A g-1 and an outstanding stability with 94.76% retention. Moreover, the flexible asymmetric supercapacitor (ASC) achieved an energy density of 96.03 W h kg-1@0.2 A g-1 at a power density of 539.98 W kg-1 with remarkable cyclic stability. The findings provide a new approach toward the rational design and synthesis of bifunctional catalysts for water splitting and energy storage.
Read full abstract