A dynamic 3D-finite element method (FEM) thermomechanical model is employed for quantifying the temperature-dependent fatigue strength of nanocrystalline diamond (NCD) coating-substrate interface. This model simulates dynamically the inclined impact test on NCD-coated cemented carbide inserts considering the temperature-dependent residual stresses in the NCD coating structure. A fatigue damage of the NCD coating-substrate interface develops after a certain number of repetitive impacts depending on the applied impact load and temperature. After the interface fatigue failure, the high compressive residual stresses of the NCD coating structure are released, and the detached coating hikes up at a certain maximum height (bulge formation). The critical impact forces for avoiding the fatigue failure of the NCD coating-substrate interface, and the subsequent film detachment after 106 impacts at various temperatures were determined by conducting inclined impact tests up to 400 °C. Considering the critical impact forces, using the mentioned FEM model, the related shear failure stresses in the NCD coating-substrate interface at various temperatures were predicted.