Triple-negative breast cancer (TNBC), defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents unique clinical challenges and generally predicts a less favorable prognosis. Despite recent advancements in TNBC treatment, a subset of patients remains resistant to immunotherapy. B7-H3, a member of the B7 family of immune checkpoints, is correlated with poor outcomes in various cancers and is distinctively expressed in tumor vasculature, marking it as a potential biomarker for tumor-associated endothelial cells. We found high expression of B7-H3 in the endothelial cells of the postoperative tissue of TNBC patients. Elevated gene expression of CD276 (encoding B7-H3) and PECAM1 (encoding CD31) in TNBC is associated with poor prognosis. Anti-B7-H3 blockade reduces tumor burden and promotes lymphocyte infiltration in a TNBC mouse model. Additionally, anti-B7-H3 blockade promotes tumor vessel normalization and enhances programmed cell death ligand 1 (PD-L1) expression. Synergistic effects were observed when B7-H3 blockade was combined with programmed cell death protein 1 (PD-1) inhibition in the TNBC mouse model. Furthermore, anti-B7-H3 inhibits human umbilical vein endothelial cell (HUVEC) proliferation by suppression of the nuclear factor kappa-B (NF-κB) signaling pathway. Downregulation of B7-H3 expression in HUVECs promotes lymphocyte trans-endothelial migration. These findings suggest that B7-H3 represents a promising therapeutic target for TNBC, and the combination of anti-B7-H3 and anti-PD-1 therapies may have synergetic effects in treating TNBC.
Read full abstract