Cauliflower (Brassica oleracea L.) and globe artichoke (Cynara scolymus L.) are vegetables with a high waste index mainly related to stems and leaves. In this study, enzymatic hydrolysates obtained from these wastes were proposed to be used as plant biostimulants. Life cycle assessment methodology was also applied to evaluate environmental performances related to cauliflower and artichoke byproducts. Hydrolysates (HYs) were chemically and biologically characterized. Amino acids, organic acids, amines, polyols, mineral elements, phenols, tannins, flavonoids and sulfur compounds were identified and quantified by means of NMR, inductively coupled plasma mass spectrometry and UV-visible analyses. Cauliflower leaf and flower HYs showed the highest concentration of free amino acids, whereas stems showed the highest concentration of Ca. Regarding artichoke, asparagine, glutamine and aspartic acid were exclusively detected in stems, whereas artichoke leaves showed the highest Mg and Mn levels together with the highest antioxidant activity. The HYs diluted in water were tested as biostimulants. The impacts of five concentrations of HYs (0.00, 0.28, 0.84, 2.52 and 7.56 g L-1) on seed germination and early seedling growth of crimson clover, alfalfa, durum wheat and corn were investigated. The application of artichoke biostimulant (0.28 g L-1) positively influenced the coefficient of velocity of germination in alfalfa, crimson clover and durum wheat, whereas cauliflower biostimulant significantly improved corn germination speed. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Read full abstract