The thermoacoustic engine that can convert heat into sound offers a promising methodology of energy usage. However, the low energy conversion rate limited the exploitation of this technology. To obtain high acoustic power and energy outputs, effects of temperature gradients on thermoacoustic characteristics were numerically investigated in this study. The results indicated that temperature gradients had significant impacts on the output sound pressure and heat flux. Meanwhile, complicated coupling effects among the temperature, fluid velocity and sound pressure were observed during the thermoacoustic oscillations. Deep insight into the phase changes implied that the temperature difference would initiate the oscillations of the fluid movement and induce the sound pressure afterwards. The study also demonstrated that large temperature differences and abrupt temperature changes were favorable for the acoustic power output.
Read full abstract