Abstract

A unique low-frequency (900 Hz) class IV flextensional transducer that produces an enhanced far-field pressure on one side and canceled far-field pressure on the other side has been developed. The transducer radiating surface consists of a thick-walled elliptical aluminum shell and a U.S. Navy type III piezoelectric stack along its major axis with two active sections and one inactive section. The directionality is achieved by simultaneously exciting the shell into an omnidirectional and dipole operation by driving stack into both extensional and bending modes. Both measurements and modeling on this device show a front to back pressure ratio of more than 30 dB, producing cardioid-type radiation patterns over an octave band, for a single transducer element. The transducers measured mechanical Q is 8, coupling coefficient is 0.25, and electroacoustic efficiency is 80% and produced a source level of 215 dB re: 1 μPa at 1 m when driven at a field limit of 394 kV/m (10 kV/in.) at resonance. The uniqueness of this transducer is its directional beam patterns (directivity index=3.4 dB) and high acoustic output power from a small (less than a third of a wavelength) single element. Six of these transducers were placed in a closely packed line array two-wavelengths long. The array successfully produced narrow directional sound beams (directivity index=8.7 dB) with a front to back ratio greater than 30 dB and a source level of 225 dB re: 1 μPa at 1 m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.