The pursuit of precision in the engineering of metal nanoparticle assemblies has long fascinated scientists, but achieving atomic-level accuracy continues to pose a significant challenge. This research sheds light on the hierarchical assembly processes of two high-nuclearity Cu(I) nanoclusters (NCs). By employing a multiligand cooperative stabilization strategy, we have isolated a series of thiacalix[4]arene (TC4A)/alkynyl coprotected Cu(I) NCs (Cux, where x = 9, 13, 17, 22). These NCs are intricately coassembled from the fundamental building units of {Cu4(TC4A)} and alkynyl-stabilized Cu5L6 in various ratios. By capturing active anion templates such as O2-, Cl-, or C22- that are generated in situ, we have further explored the secondary structural self-assembly of these clusters. Cu13 serves as a secondary assembly module for constructing Cu38 and Cu43, which exhibit the highest nuclearity reported to date among Cu(I) NCs encased in macrocyclic ligands. Notably, Cu38 demonstrates an impressive Faradaic efficiency of 62.01% for hydrocarbons at -1.57 V vs RHE during CO2 electroreduction, with 34.03% for C2H4 and 27.98% for CH4. This performance establishes it as an exceptionally rare, large, atomically precise metal NC (nuclearity >30) capable of catalyzing the formation of highly electro-reduced hydrocarbon products. Our research has introduced a new approach for constructing high-nuclearity Cu(I) NCs through a hierarchical assembly method and investigating their potential in the electrocatalytic transformation of CO2 into hydrocarbons.