Abstract

Due to the high complexity of constructing exact k -nearest neighbor graphs, approximate construction has become a popular research topic. The NN-Descent algorithm is one of the representative in-memory algorithms. To effectively handle large datasets, existing state-of-the-art solutions combine the divide-and-conquer approach and the NN-Descent algorithm, where large datasets are divided into multiple partitions, and a subgraph is constructed for each partition before all the subgraphs are merged, reducing the memory pressure significantly. However, such solutions fail to address inefficiencies in large-scale k -nearest neighbor graph construction. In this paper, we propose L-FNNG, a novel solution for accelerating large-scale k -nearest neighbor graph construction on CPU-FPGA heterogeneous platform. The CPU is responsible for dividing data and determining the order of partition processing, while the FPGA executes all construction tasks to utilize the acceleration capability fully. To accelerate the execution of construction tasks, we design an efficient FPGA accelerator, which includes the Block-based Scheduling (BS) and Useless Computation Aborting (UCA) techniques to address the problems of memory access and computation in the NN-Descent algorithm. We also propose an efficient scheduling strategy that includes a KD-tree-based data partitioning method and a hierarchical processing method to address scheduling inefficiency. We evaluate L-FNNG on a Xilinx Alveo U280 board hosted by a 64-core Xeon server. On multiple large-scale datasets, L-FNNG achieves, on average, 2.3× construction speedup over the state-of-the-art GPU-based solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.