Abstract

Multipliers are widely-used arithmetic operators in digital signal processing and machine learning circuits. Due to their relatively high complexity, they can have high latency and be a significant source of power consumption. One strategy to alleviate these limitations is to use approximate computing. This paper thus introduces an original FPGA-based approximate multiplier specifically optimized for machine learning computations. It utilizes dynamically reconfigurable lookup table (LUT) primitives in AMD-Xilinx technology to realize the core part of the computations. The paper provides an in-depth analysis of the hardware architecture, implementation outcomes, and accuracy evaluations of the multiplier proposed in INT8 precision. The paper also facilitates the generalization of the proposed approximate multiplier idea to other datatypes, providing analysis and estimations for hardware cost and accuracy as a function of multiplier parameters. Implementation results on an AMD-Xilinx Kintex Ultrascale+ FPGA demonstrate remarkable savings of 64% and 67% in LUT utilization for signed multiplication and multiply-and-accumulation configurations, respectively when compared to the standard Xilinx multiplier core. Accuracy measurements on four popular deep learning (DL) benchmarks indicate a minimal average accuracy decrease of less than 0.29% during post-training deployment, with the maximum reduction staying less than 0.33%. The source code of this work is available on GitHub.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call