Abstract

Coarse-grained reconfigurable arrays (CGRAs) are promising design choices in computation-intensive domains, since they can strike a balance between energy efficiency and flexibility. A typical CGRA comprises processing elements (PEs) that can execute operations in applications and interconnections between them. Nevertheless, most CGRAs suffer from the ineffectiveness of supporting flexible architecture design and solving large-scale mapping problems. To address these challenges, we introduce HierCGRA, a novel framework that integrates hierarchical CGRA modeling, Chisel-based Verilog generation, LLVM-based data flow graph (DFG) generation, DFG mapping, and design space exploration (DSE). With the graph homomorphism (GH) mapping algorithm, HierCGRA achieves a faster mapping speed and higher PE utilization rate compared with the existing state-of-the-art CGRA frameworks. The proposed hierarchical mapping strategy achieves 41× speedup on average compared with the ILP mapping algorithm in CGRA-ME. Furthermore, the automated DSE based on Bayesian optimization achieves a significant performance improvement by the heterogeneity of PEs and interconnections. With these features, HierCGRA enables the agile development for large-scale CGRA and accelerates the process of finding a better CGRA architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.