A chloromethylated polystyrene-N-methyl thiourea chelating resin (DMTUR) was successfully prepared by the reaction of chloromethylated polystyrene beads (PS-Cl) with N-methyl thiourea (DMTU). The DMTUR exhibited a high selective adsorption toward Hg(II) in the mixture of different metal ions containing Cu(II), Hg(II), Cd(II), Pb(II), Cr(III) and Ni(II), and the adsorption capacity of Hg(II) approached a maximum with a value of 347 mg/g at pH = 4.0. Moreover, the batch kinetic study showed that the adsorption behavior of Hg(II) presented as a pseudo-second-order manner. And the adsorption isotherms fitted well with Langmuir model, and the maximum uptake of Hg(II) could reach to be 476 mg g−1 at 35 °C. The thermodynamics study ensured the adsorption process essentially as favorable and endothermic. Finally, an eluent of 4 M HNO3 solution could completely remove the adsorbed Hg(II) and the adsorption capacity allowed a high level at least five cycles. As aforementioned appealing properties, the DMTUR with simple technology, high adsorption capacity, significant selectivity and good regenerability may have a potential application in industrial scale as a treatment of enriched Hg(II) in wastewater.
Read full abstract