Clavibacter michiganensis (Cmm), designated as an A2 quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO), incites bacterial canker of tomato, which presently eludes rapid and effective control methodologies. Dense biofilms formed by Cmm shield internal bacteria from host immune defenses and obstruct the ingress of agrochemicals. Even when agrochemicals disintegrate biofilms, splashing and bouncing during application disperse active ingredients away from target sites. Herein, we present a supramolecular strategy to fabricate a hexagonal prism-shaped material, BPGA@CB[8], assembled from an 18β-glycyrrhetinic acid derivative (PBGA) and host molecule-cucurbit[8]uril (CB[8]) via host-guest recognition. This positively charged material manifests multifaceted functionalities, notably the ability to surmount biofilm barriers, annihilate the encased pathogenic bacteria, and enhance foliar affinity of droplets. The strong in vitro potency and effective deposition of BPGA@CB[8] foster optimal conditions for robust in vivo efficacy, demonstrating superior protective and curative activities (56.9%/53.4%) against canker of tomato at a low-dose of 100 μg·mL-¹ compared to BPGA (44.6%/42.2%), kasugamycin (30.1%/28.4%), and thiodiazole copper (35.4%/31.0%). This supramolecular material, based on natural product derivatives, provides a potent treatment for high-risk canker of tomato, and exemplifies the utility of supramolecular strategies in optimizing the attributes of natural products for managing plant bacterial diseases.
Read full abstract