The seven-spotted ladybug is a widespread species in the Palearctic, and also acclimated in the Nearctic. It has been classified into different species on the basis of certain morphological characteristics, the geographical origin, and the genitalia structure of both sexes. The morphotypes of North Africa and the Canary Islands are separated, under the name of Coccinella algerica Kovář, 1977, from the rest of the Palearctic and Nearctic populations of Coccinella septempunctata Linnaeus, 1758. In this study, we investigated, on one hand, whether potential reproductive barriers have been established during evolution between the geographically isolated North African and the European seven-spotted ladybugs by performing reciprocal crosses. On the other hand, we assessed their cuticular hydrocarbon (CHC) divergence by GC-MS. The 33 CHCs indentified are with a skeleton of 23 to 32 carbon atoms. These CHCs are linear alkanes (24.9 ± 3.6%) and methyl-branched alkanes (75.1 ± 3.6%) including monomethylalkanes (48.8 ± 2.4%), dimethylalkanes (24.6 ± 4.0%) and trimethylalkanes (2.0 ± 1.0%). Although all the CHC compounds identified are present in the two seven-spotted ladybugs and their F1 and F2 hybrids, their profiles diverged significantly. However, these chemical divergences have not altered the sexual communication to cause reproductive isolation. The two ladybugs interbreed and leave viable and fertile offspring, with even a heterosis effect on reproductive performances, without phenotypic degradation after the F1 generation. So, these chemical differences are just an intraspecific variability in response to heterogeneous environments. The two types of ladybugs can be considered as two different races of the same species with reduced genetic divergence.
Read full abstract