Abstract

Many local dairy cattle breeds are facing genetic extinction due to a large proportion of foreign genes, which have been introgressed in the past. In addition, the performance gap to popular high-yielding breeds is increasing, resulting in a risk of numeric extinction. In the present simulation study, a genomic rotational crossbreeding scheme with the high-yielding German Holstein breed and the numerically small German Angler breed was analysed with the aim to utilize heterosis effects in the crossbred animals. Simultaneously inbreeding was controlled, and the amount of Holstein introgression observed in the Angler breed was reduced. Different scenarios of implementing OCS methods for Angler individuals were evaluated, which differed in their restrictions regarding kinship, native kinship, as well as the amount of genetic contributions from German Holstein. The results showed that rotational crossbreeding can result in superior crossbred offspring compared to the purebred parental lines, whereby OCS methods can simultaneously restrict the increase in inbreeding and keep the Holstein contributions at their current level. However, reducing the amount of migrant contributions while restricting the increase in the native kinship in Angler turned out to be a costly restriction. The reason was that Angler with low genetic contributions from Holsteins tended to have similar Angler ancestors. Consequently, reducing Holstein contributions would considerably increase the native kinship in Angler if it were not constrained. The constraint on the native kinship made a constraint on the conventional kinship superfluous and caused it to increase at a much lower rate than envisaged. This led to both, a high genetic diversity and a low genetic gain. The high genetic diversity in Angler also resulted in lower and oscillating heterosis effects in the crossbred animals. Thus, the reduction of migrant contribution did not increase heterosis effects in the crossbred offspring, and did not result in superior crossbred offspring in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.