Terpene synthases (TPSs), key gatekeepers in the biosynthesis of herbivore-induced terpenes, are pivotal in the diversity of terpene chemotypes across and within plant species. Here, we constructed a gene-based pangenome of the Gossypium genus by integrating the genomes of 17 diploid and 10 tetraploid species. Within this pangenome, 208 TPS syntelog groups (SGs) were identified, comprising 2 core SGs (TPS5 and TPS42) present in all 27 analyzed genomes, 6 softcore SGs (TPS11, TPS12, TPS13, TPS35, TPS37, and TPS47) found in 25 to 26 genomes, 131 dispensable SGs identified in 2 to 24 genomes, and 69 private SGs exclusive to a single genome. The mutational load analysis of these identified TPS genes across 216 cotton accessions revealed a great number of splicing variants and complex splicing patterns. The nonsynonymous/synonymous Ka/Ks value for all 52 analyzed TPS SGs was less than one, indicating that these genes were subject to purifying selection. Of 208 TPS SGs encompassing 1795 genes, 362 genes derived from 102 SGs were identified as atypical and truncated. The structural analysis of TPS genes revealed that gene truncation is a major mechanism contributing to the formation of atypical genes. An integrated analysis of three RNA-seq datasets from cotton plants subjected to herbivore infestation highlighted nine upregulated TPSs, which included six previously characterized TPSs in G. hirsutum (AD1_TPS10, AD1_TPS12, AD1_TPS40, AD1_TPS42, AD1_TPS89, and AD1_TPS104), two private TPSs (AD1_TPS100 and AD2_TPS125), and one atypical TPS (AD2_TPS41). Also, a TPS-associated coexpression module of eight genes involved in the terpenoid biosynthesis pathway was identified in the transcriptomic data of herbivore-infested G. hirsutum. These findings will help us understand the contributions of TPS family members to interspecific terpene chemotypes within Gossypium and offer valuable resources for breeding insect-resistant cotton cultivars.