Abstract
Sugarcane is the most important sugar crop in the world. Like other crops, sugarcane suffers from herbivorous insect attack. The oriental armyworm Mythimna separata is a devastating pest of various crops in northeast Asia and an outbreak of this pest can result in substantial yield loss for sugarcane. However, the plant defense response situation is widely acquisition in model crops, but there is little information about how sugarcane plants defend themselves against this herbivore at the molecular and biochemical levels. We combined transcriptome and metabolomic analysis to investigate the changes in gene expression and metabolic processes that occurred in sugarcane plants after continuous feeding by M. separata larvae for 12 and 24 h. We identified 13 662 genes and 55 metabolites that were differentially regulated in sugarcane plants fed on by M. separata. The genes involved in phytohormones, transcription factors, and kinase-related were activated and metabolism compounds such as carbohydrate, amino acid, ferulic substances and glutathione were detected regulated in sugarcane defense response. Comparable analyses showed a close correspondence relationship among pathways of phenylalanine metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis in transcript and metabolite profiles. Furthermore, a bioassay experiment was conducted to test the influence of up-regulated metabolites on M. separata growth and found chlorogenic acid had a lethal effect. The results of our study greatly enhanced the understanding of the sugarcane-induced defense response mechanism against herbivore infestation at the transcriptional and metabolic levels. Also make contributions to provide clues for development of green pest control method. © 2021 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.