Abstract

Beneficial soil microbes can promote plant growth and induce systemic resistance (ISR) in aboveground tissues against pathogens and herbivorous insects. Despite the increasing interest in microbial-ISR against herbivores, the underlying molecular and chemical mechanisms of this phenomenon remain elusive. Using Arabidopsis thaliana and the rhizobacterium Pseudomonas simiae WCS417r (formerly known as P. fluorescens WCS417r), we here evaluate the role of the JA-regulated MYC2-branch and the JA/ET-regulated ORA59-branch in modulating rhizobacteria-ISR to Mamestra brassicae by combining gene transcriptional, phytochemical, and herbivore performance assays. Our data show a consistent negative effect of rhizobacteria-mediated ISR on the performance of M. brassicae. Functional JA- and ET-signaling pathways are required for this effect, as shown by investigating the knock-out mutants dde2-2 and ein2-1. Additionally, whereas herbivory mainly induces the MYC2-branch, rhizobacterial colonization alone or in combination with herbivore infestation induces the ORA59-branch of the JA signaling pathway. Rhizobacterial colonization enhances the synthesis of camalexin and aliphatic glucosinolates (GLS) compared to the control, while it suppresses the herbivore-induced levels of indole GLS. These changes are associated with modulation of the JA-/ET-signaling pathways. Our data show that the colonization of plant roots by rhizobacteria modulates plant-insect interactions by prioritizing the JA/ET-regulated ORA59-branch over the JA-regulated MYC2-branch. This study elucidates how microbial plant symbionts can modulate the plant immune system to mount an effective defense response against herbivorous plant attackers.Electronic supplementary materialThe online version of this article (doi:10.1007/s10886-016-0787-7) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.