The majority of states have fully legalized the use of medical cannabis (MC), and nearly all other states allow limited access to cannabidiol (CBD), a non-intoxicating constituent of cannabis often touted for a range of therapeutic indications. Further, the Agricultural Improvement Act of 2018 legalized hemp-derived products in all 50 states; typically high in CBD, these products are derived from cannabis varieties containing ≤0.3% delta-9-tetrahydrocannabinol (THC) by weight. The recent "green rush" has resulted in a striking increase in cannabis use among patients and consumers who often use a wide variety of novel product types, each with a unique blend of cannabinoid constituents. Importantly, however, several cannabinoids have the potential to cause drug-drug interactions (DDI) with other medications, primarily due to their involvement with the hepatic cytochrome P450 (CYP450) system. This article examines the potential for individual cannabinoids, particularly CBD, to interact with the hepatic metabolic system, which is concerning given its involvement in the metabolism of commonly-prescribed medications. CBD and other cannabinoids are metabolized extensively by the CYP450 system, and also inhibit many of these enzymes, potentially leading to variable serum levels of other medications, as well as variable levels of cannabinoids when other medications modify the system. As access and interest in cannabinoid-based products continues to increase, critical questions remain unanswered regarding their safety. The complex relationship between cannabinoids and the hepatic metabolic system, including common potential DDI resulting from cannabinoid exposure, are explored along with the clinical significance of these potential interactions and monitoring or mitigation strategies.
Read full abstract