Fine particulate matter, namely PM2.5, increases the risk of morbidity and mortality in various systems, including the hematopoietic and immune systems. However, there is limited experimental evidence supporting the association between PM2.5 exposure and hematopoietic outcomes as most studies focus on epidemiological data. In this study, adult male mice were exposed to PM2.5 for a long time to investigate hematopoietic toxicity. There were significant increases in red blood cells (RBC), hemoglobin (HGB), and white blood cells (WBC) in peripheral blood after 5-month real-environmental PM2.5 exposure, indicating elevated circulatory inflammation and potential hematopoietic abnormality. Moreover, we observed abnormal proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs), along with altered mRNA levels of hematopoietic genes and increased proinflammatory factors in the bone marrow (BM). Transcriptomic analysis of BM cells suggested that PM2.5 exposure activated immune responses associated with lymphocytes. Then, PM2.5 exposure via intratracheal instillation was performed for 8 weeks to verify the toxic effect. The results of the complete blood count were similar to those of real-environmental exposure, with drastic changes in the number and function of HSPCs, as well as mRNA levels of the hematopoietic genes and increased inflammatory factors in the BM being detected. Furthermore, lymphocyte subsets changed significantly in the BM and spleen, confirming immune disorder following PM2.5 exposure. In conclusion, PM2.5 interfered with the process of BM hematopoiesis by triggering inflammation and leading to immune disorder. Our study provided experimental evidence for the hematopoietic toxicity of PM2.5 and highlighted the significance of reducing air pollution.