Asteroseismology studies the physical structure of stars by analyzing their solar-type oscillations as seismic waves and frequency spectra. The physical processes in stars and oscillations are similar to the Sun, which is more evolved to the red-giant branch (RGB), representing the Sun’s future. In stellar astrophysics, the RGB is a crucial problem to determine. An RGB is formed when a star expands and fuses all the hydrogen in its core into helium which starts burning, resulting in helium burning (HeB). According to a recent state by NASA Kepler mission, 7000 HeB and RGB were observed. A study based on an advanced system needs to be implemented to classify RGB and HeB, which helps astronomers. The main aim of this research study is to classify the RGB and HeB in asteroseismology using a deep learning approach. Novel bidirectional-gated recurrent units and a recurrent neural network (BiGR)-based deep learning approach are proposed. The proposed model achieved a 93% accuracy score for asteroseismology classification. The proposed technique outperforms other state-of-the-art studies. The analyzed fundamental properties of RGB and HeB are based on the frequency separation of modes in consecutive order with the same degree, maximum oscillation power frequency, and mode location. Asteroseismology Exploratory Data Analysis (AEDA) is applied to find critical fundamental parameters and patterns that accurately infer from the asteroseismology dataset. Our key findings from the research are based on a novel classification model and analysis of root causes for the formation of HeB and RGB. The study analysis identified that the cause of HeB increases when the value of feature Numax is high and feature Epsilon is low. Our research study helps astronomers and space star oscillations analyzers meet their astronomy findings.