Abstract

The unstable nucleus $^8$Be, with its two $\alpha$-cluster configuration, is the doorway to the formation of heavier $\alpha$-cluster nuclei. Most importantly, its the precursor of the production of $^{12}$C through the Hoyle state, a resonance state of three $\alpha$ clusters, in the helium burning phase of a massive star. The nucleus exhibits a ground state band of rotational states established through $\alpha-\alpha$ scattering experiments. A subsequent precision particle-$\gamma$ coincidence measurement of the electromagnetic transition between the 4$^+\rightarrow$ 2$^+$ excited states also corroborated the evidence for a highly deformed dumb-bell shaped structure of $^8$Be. A simultaneous phenomenological R-matrix analysis of the measured capture reaction cross sections along with the elastic excitation function and phase shift data has been performed. The resulting reduced transition strength of 21.96$\pm$3.86 $e^2 fm^4$ compares well with the estimated experimental value of 21.0$\pm$2.3 e$^2$ fm$^4$. The R-matrix yield of the B($E2$) value is closer to the prediction of cluster model but about 19$\%$ less than the {\it ab initio} result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.