Accurate and reliable motion intention perception and prediction are keys to the exoskeleton control system. In this paper, a motion intention prediction algorithm based on sEMG signal is proposed to predict joint angle and heel strike time in advance. To ensure the accuracy and reliability of the prediction algorithm, the proposed method designs the sEMG feature extraction network and the online adaptation network. The feature extraction utilizes the convolution autoencoder network combined with muscle synergy characteristics to get the high-compression sEMG feature to aid motion prediction. The adaptation network ensures the proposed prediction method can still maintain a certain prediction accuracy even the sEMG signals distribution changes by adjusting some parameters of the feature extraction network and the prediction network online. Ten subjects were recruited to collect surface EMG data from nine muscles on the treadmill. The proposed prediction algorithm can predict the knee angle 101.25 ms in advance with 2.36 degrees accuracy. The proposed prediction algorithm also can predict the occurrence time of initial contact ms in advance. Meanwhile, the proposed feature extraction method can achieve accuracy of sEMG reconstruction and can guarantee accuracy even when the distribution of sEMG is changed without any adjustment. The online adaptation network enhances the accuracy of sEMG reconstruction of CAE to and decreases the angle prediction error from to . The proposed method achieves effective motion prediction in advance and alleviates the influence caused by the non-stationary of sEMG.