Abstract

Isochronous cueing is widely used in gait rehabilitation even though it alters the stride-time dynamics toward anti-persistent rather than the persistent, fractal fluctuations characteristic of human walking. In the present experiment we tested an alternative cueing method: pacing by a human. To this end, we formed sixteen pairs of walkers based on their preferred stride frequency. Each pair consisted of a designated “leader” and a “follower” who was instructed to synchronize his or her steps to those of the leader. Heel strike times were detected with tiny footswitches, and Detrended Fluctuation Analysis (DFA) was applied to estimate fractal exponents of stride-time series. To ensure that the stride-time dynamics of the follower matched those of the leader, the latter was structurally modified by artificial cueing via either an isochronous metronome or a fractal metronome, in contrast to self-paced walking. Mean relative phases between followers and leaders were close to 0°, confirming that followers effectively synchronized their footfalls with those of the leaders. Mean fractal exponents were not statistically different between followers and leaders in any condition and highly correlated, suggesting that followers matched their stride-time structure to that of leaders. Our results open perspectives for alternative, more natural cueing protocols for gait rehabilitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.