The local damage detection procedures in rotating machinery are based on the analysis of the impulsiveness and/or the periodicity of disturbances corresponding to the failure. Recent findings related to non-Gaussian vibration signals showed some drawbacks of the classical methods. If the signal is noisy and it is strongly non-Gaussian (heavy-tailed), searching for impulsive behvaior is pointless as both informative and non-informative components are transients. The classical dependence measure (autocorrelation) is not suitable for non-Gaussian signals. Thus, there is a need for new methods for hidden periodicity detection. In this paper, an attempt will be made to use alternative measures of dependence used in time series analysis that are less known in the condition monitoring (CM) community. They are proposed as alternatives for the classical autocovariance function used in the cyclostationary analysis. The methodology of the auto-similarity map calculation is presented as well as a procedure for a “quality” or “informativeness” assessment of the map is proposed. In the most complex case, the most resistant to heavy-tailed noise turned out the proposed techniques based on Kendall, Spearman and Quadrant autocorrelations. Whereas in the case of the local fault disturbed by the Gaussian noise, the most efficient proved to be a commonly-known approach based on Pearson autocorrelation. The ideas proposed in the paper are supported by simulation signals and real vibrations from heavy-duty machines.
Read full abstract