The presence of particles in supersonic flows can cause significant increases in stagnation point heat fluxes (Dunbar et al. in AIAA J 13:908–912, 1975). This effect is commonly named ‘particle-induced heat flux augmentation’ or just ‘heating augmentation.’ Heating augmentation can be described as the sum of the conversion of kinetic energy of the particles into thermal energy, characterized by the energy conversion efficiency, also called accommodation coefficient, and the increase of convective heat flux (Polezhaev et al. in High Temp 30:1147–1153, 1992; Vasilevskii and Osiptsov in Experimental and numerical study of heat transfer on a blunt body in dusty hypersonic flow 33rd thermophysics conference, American Institute of Aeronautics and Astronautics, 1999). Although the accommodation coefficient is fundamental for heating augmentation characterization, there is only a small number of experimental datasets for it. This work focusses on the experimental determination of the accommodation coefficient in flow regimes at Mach number 2.1, Reynolds number, based on the probe nose diameter, from approx. 6e5 to 1.8e6, and nominal particle sizes of approx. 20 µm. The decrease of particle velocity and kinetic energy flux in the shock layer is measured with highly resolved shadowgraphy for individual particles. The particle kinetic energy flux is decreased by 29% on average by particle deceleration in the shock layer. Negligible kinetic energy fluxes of rebounded particles were measured. The accommodation coefficient is approx. 0.36 for Al2O3 and SiO2 particles, while it is approx. 0.09 for MgO particles. Hence, it is significantly smaller than the widely used value of 0.7, based on the study of (Fleener and Watson in Convective heating in dust-laden hypersonic flows 8th thermophysics conference, 1973), but in good agreement with values given in (Hove and Shih in Reentry vehicle stagnation region heat transfer in particle environments 15th aerospace sciences meeting, 1977) and (Molleson and Stasenko in High Temp 55:87–94, 2017. https://doi.org/10.1134/S0018151X1701014X ). No difference between erosive and elastic particle reflection mode was detected on the conversion efficiency. The data from a simplification of the modeling approach of the conversion efficiency for elastic particle reflection by Molleson and Stasenko (2017) are in poor agreement with experimental data.
Read full abstract