Abstract
The objective of this research was to investigate pin fin midline heat transfer in terms of our understanding of stagnation region heat transfer for cylinders in cross flow and turbine airfoils. An experimental investigation was conducted in a staggered-pin fin array at Reynolds numbers of 3000, 10,000, and 30,000 based on the maximum velocity between cylinders. Midline distributions of static pressure and heat transfer were acquired for rows 1 through 8 at the three Reynolds numbers. Turbulence measurements and velocity distributions were acquired at the inlet and in between adjacent pins in rows using hot wire anemometry. One-dimensional power spectra were calculated to determine integral and energy scales. Midline heat transfer distributions are reported as the Nusselt number divided by the square root of the Reynolds number as a function of angle. In these terms, heat transfer was found to increase through row 3 for a Reynolds number of 30,000. After row 3, heat transfer diminished slightly. The Reynolds number for each row was recast in terms of an effective approach velocity, which was found to be highest in row 3 due to the upstream blockage of row 2. Based on this effective velocity the Nusselt number divided by the square root of the Reynolds number increased through row 4. These data indicate that heat transfer is highest in row 3 pins due to the highest effective velocity, while heat transfer augmentation due to turbulence is highest in row 4 and beyond. Hot wire measurements show higher turbulence intensity and dissipation rates upstream of row 4 compared to upstream of row 3. Generally, pressure, heat transfer, and turbulence measurements were taken at all rows, providing a better understanding of turbulent transport from pin fin arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.