Abstract

Abstract An experimental study has been performed to investigate the effect of freestream vortical structures and vorticity on stagnation region heat transfer. A heat transfer model with a cylindrical leading edge was tested in a wind tunnel at Reynolds numbers ranging from 67,750 to 142,250 based on leading edge diameter of the model. Grids of parallel rods were placed at several locations upstream of the heat transfer model in orientations where the rods were perpendicular and parallel to the stagnation line to generate freestream turbulence with distinct vortical structures. All three components of turbulence intensity, integral length scale and the spanwise and transverse vorticity were measured to characterize the freestream turbulence. The measured heat transfer data and freestream turbulence characteristics were compared with existing empirical models for the stagnation line heat transfer. A new correlation for the stagnation line heat transfer has been developed that includes the spanwise fluctuating vorticity components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.