The National Aeronautics and Space Administration’s recently inaugurated New Millennium program, with its emphasis on miniaturized spacecraft, has generated interest in a low-power (10–30 W), low-mass, high-efficiency RTPV (Radioisotope Thermophotovoltaic) power system. This led to a Department of Energy (DOE)-sponsored design study of such a system, which was assigned to OSC (formerly Fairchild) personnel, who have been conducting similar studies of a 75 W RTPV system for the Pluto Express Mission, with very encouraging results. The 75 W design employed two 250 W general purpose heat source (GPHS) modules that DOE had previously developed and safety-qualified for various space missions. These modules were too large for the small RTPVs described in this paper. To minimize the need for new development and safety verification studies, OSC generated derivative designs for 125 W and 62.5 W heat source modules containing identical fuel pellets, clads, impact shell and thermal insulation. OSC also generated a novel heat source support scheme to reduce the heat losses through the structural supports, and a new and much simpler radiator structure, eliminating the need for honeycombs and heat pipes.OSCs previous RTPV study had been based on the use of GaSb PV cells and spectrally selective IR filters that had been partially developed and characterized by Boeing (now EDTEK) personnel. They had supplied us with spectral data on filter reflectivities and cell quantum efficiencies. Two sets of data were furnished: one based on actual measurements made in 1993, and a more optimistic set based on projected performance improvements. Even the measured data set yielded significantly better system performance than present thermoelectric systems, but the projected data yielded much better system performance. Because of these encouraging results, OSC in the fall of 1994 initiated an experimental program at EDTEK to develop improved filters and cells, to demonstrate how much improvement can actually be achieved. OSC requested that first priority be given to filter improvements, because our system studies indicated that improved filters would have a much greater effect on system performance than cell improvements. By July 1995 EDTEK had achieved about 90% of the filter performance improvement projected in 1993. Work on further filter and cell improvements is continuing at EDTEK, as part of a joint effort with OSC and with DOE’s Mound Laboratory to develop and test a prototypic RTPV generator, with both an electrical heater and a radioisotope heat source.The improved filter performance data have been applied to the design of low-power (10–30 W) RTPV power systems, for possible application to new millennium spacecraft for missions to the outer solar system, where solar power generation is impractical. The results reported in this paper indicate that such systems can yield very attractive performance with the RTPV generator integrated with the miniaturized new millennium spacecraft.
Read full abstract