Abstract

A numerical analysis is performed to study the characteristics of heat transfer from a block heat source module at different angles in two-dimensional cabinets. Great efforts are carried out to conduct the effects of thermal interaction between the air steams inside and outside the cabinet on the conjugate conduction–natural convection phenomena. Moreover, the enhancement of cooling performance of the heat source module through the construction of air vents on cabinet wall is rigorously examined. The computation domain covers the cabinet and the surrounding area, and the temperature and velocity fields of the cabinet and surrounding area are solved simultaneously. Comparing the results for cases with and without the consideration of thermal interaction between the air streams, the difference in hot spot temperature of module can be up to 26% for Pr = 0.7, K bf = K wf = 100, 0 ≦ K pf ≦ 100, 10 5 ≦ Ra ≦ 10 7 and φ = 0°, 90°, 270°. The maximum reduction in hot spot temperature is about 41% when two air vents are constructed on the cabinet wall. The variation of module angle results in the maximum difference of the hot spot temperature is 17% for closed cabinet, and 10% for ventilated cabinet. In addition, the hot spot temperatures for cases with K pf = 10 are about two times of that for K pf = 100.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.