In this paper three-dimensional numerical simulation of the atmospheric saturated pool boiling was performed. The applied modelling and numerical methods enable full representation of the two-phase mixture behaviour on the heating surface with the inclusion of the swell level prediction. The three-dimensional investigation presented here was performed in order to take into account a convective heat transfer on the heated surface, as well as spatial effects of the vapour generation and a two phase flow such as phase dispersion within the two-phase mixture. The results are presented for a short period of time after the initiation of the heat supply and vapor generation on the heating surface. The replenishment of the heating surface with water and partial surface wetting for lower heat fluxes is shown. The influence of the density of nucleation sites and the bubble residence time on the wall on the pool boiling dynamics is discussed. Also, the influence of the heat flux intensity on the pool boiling dynamics is investigated. The applied numerical and modelling method showed robustness by allowing stable calculations for wide ranges of applied modelling boiling parameters.
Read full abstract