Abstract This study presents observational findings of air–sea turbulent heat flux anomalies during the onset of the South China Sea summer monsoon (SCSSM) in 2021 and explains the mechanism for high-resolution heat flux variations. Turbulent heat flux discrepancies are not uniform throughout the basin but indicate a significant regional disparity in the South China Sea (SCS), which also experiences evident year-to-year variability. Based on buoy- and cruise-based air–sea measurements, high-temporal-resolution (less than hourly) anomalies in the latent heat flux during the SCSSM burst are unexpectedly determined by sea–air humidity differences instead of wind effects under near-neutral and mixed marine atmospheric boundary layer (MABL) stability conditions. However, latent heat anomalies are mainly induced by wind speed under changing MABL conditions. The sensible heat flux is much weaker, with its anomalies dominated by sea–air temperature differences regardless of the boundary layer condition. The observational results are used to examine the discrepancies in turbulent heat fluxes and associated air–sea variables in reanalysis products. The comparisons indicate that latent and sensible heat fluxes in the reanalysis are overestimated by approximately 55 and 3 W m−2, respectively. These overestimations are mainly induced by higher estimates of sea–air humidity/temperature differences. The relative humidity is underestimated by approximately 4.2% in the two high-resolution reanalysis products. The higher SST (near-surface specific humidity) and lower air temperature (specific air humidity) eventually lead to higher estimates of sea–air humidity/temperature differences (1.75 g kg−1/0.25°C), which are the dominant factors controlling the variations in the air–sea turbulent heat fluxes. Significance Statement Air–sea interactions are significant in predicting the onset of East Asian monsoon systems, including the SCSSM. During the SCSSM in 2021, four buoys and cruise observations are used to investigate anomalies in the latent and sensible heat fluxes. The physical mechanism of the variations in turbulent heat fluxes under different MABL stability conditions is explored in this study. The humidity and wind speed anomalies play roles under mixed boundary conditions in determining the high-resolution variations in latent heat fluxes. Based on these observational results, the heat fluxes and associated air–sea variables from reanalysis products are compared to identify the differences in the operational systems. These comparison results can help improve the reanalysis to obtain better monsoon predictions.
Read full abstract