Abstract
The cooling system is the auxiliary equipment that consumes the most energy in a data center, accounting for about 30 to 50% of the total energy consumption. In order to effectively reduce the energy consumption of a data center, it is very important to improve the heat exchange efficiency at the chip level. Compared with air cooling, single-phase cold plate liquid cooling, and immersion liquid cooling, the flat loop heat pipe (FLHP) is considered to be a better chip-level cooling solution for data centers. It has extremely high heat transfer efficiency and heat flux variability, and it can avoid the operation risk caused by liquid entering the server. In this paper, a FLHP with an evaporator designed with a “Tesla valve” flow channel configuration is developed. Experiments on the FLHP are carried out, focusing on the installation angles and cooling condition factors. The results show that an inclination angle of 20° is the critical point of the influence of gravity on the performance of the FLHP; to ensure good operation of the FLHP, the installation angle should be greater than 20°. The equivalent heat transfer coefficients of the FLHP condenser under different cooling conditions are calculated. It is found that water cooling can provide higher cooling heat transfer coefficients with lower energy consumption and operating noise. Additionally, the heat transfer limit, operating temperature uniformity, and start-up stability of the FLHP are significantly improved under water cooling conditions. The maximum heat load of the FLHP is up to 230 W, and the temperature difference of the evaporator surface can be controlled within 0.5 °C, under 20 °C water cooling. Finally, using the FLHP for thermal management of the chip, its heat transfer efficiency is 166 and 41% higher than that of air cooling and water cooling, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.