Abstract High Pressure Air Injection (HPAI) is an Improved Oil Recovery (IOR) technique in which compressed air is injected into light oil, high-pressure reservoirs. The objective of this process is the oxygen from the injected air reacts with a small fraction of the reservoir oil at an elevated temperature to produce a mixture of carbon dioxide and nitrogen. The produced gas flowing from the reaction region mobilizes the oil downstream of the reaction zone towards the production wells. Knowledge of the oil's oxidation behaviour is a key to the successful implementation of this process. However, information on oxidation behaviour of oils based on their compositions is limited, especially for light oils. An experimental study was designed to examine the oxidation behaviour of three crude oils (a light oil, a medium oil, and an Athabasca bitumen) by using the Pressurized Differential Scanning Calorimeter (PDSC) at pressures from 110 to 6,894 kPa. Pure hydrocarbon aromatics and paraffin samples were also selected for the current study. The study shows an increase of pressure results in an increase in the rate of oxidation reactions and heat released from the oxidation reactions. The PDSC heat flow curves also clearly demonstrate the effect of chemical structure of the samples on their oxidation behaviour. The extent of oxidation of hydrocarbon samples is strongly dependent on the nature of the hydrocarbon. Introduction Air injection continues to be an important oil recovery process, used to increase both the amount and the rate of oil recovered from a petroleum reservoir(1,2). When air is injected into a light oil reservoir, exothermic chemical reactions occur between the reservoir oil and the oxygen contained in the injected air. The reactions are mainly oxidation reactions resulting in heat generation and the production of carbon dioxide, carbon monoxide, and water corresponding to the consumption of oxygen. The heat of reactions results in a temperature elevation leading to vapourization of some lighter components and a decrease of viscosity of the oil, even though the heat effect is not very important for light or medium oil compared to heavy oil. Therefore, the driving gas, which can sweep the oil to production wells, is not the injected air but an in situ-generated flue gas, composed of CO, CO2, N2, and vapourized light hydrocarbon components. Air injection is a complex process involving simultaneous heat and mass transfer in a multiphase environment coupled with oxidation chemical reactions. Oxidation reactions play an important role in this process. In order to improve the efficiency of the air injection process, it is necessary to have additional knowledge of the factors influencing the process and how they affect the oxidation of oil. In recent years, the application of thermal analysis techniques, thermogravimetry (TG/DTG), and differential scanning calorimetry (DSC) have obtained wide acceptance in the study of combustion behaviour of oil. Attempts to use thermal analysis techniques to study crude oil combustion began with Tadema(3).
Read full abstract