Alcea rosea, belonging to the Alcea genus in the Malvaceae family, originated from China, but it is now grown worldwide. A. rosea has been widely used in traditional Chinese medicine to alleviate constipation, pain, swelling, and sores. In February 2023, typical symptoms of fungal infection were observed on A. rosea at Guizhou Normal University in Guiyang, Guizhou Province, China. The disease incidence was over 90% (n = 100) for the surveyed A. rosea plants, and the disease severity range from 30% to 90%. The initial symptoms of A. rosea rust were the appearance of chlorotic spots on the leaves. Subsequently, numerous reddish to dark-brown erumpent pustules (telia) were observed. Gradually, the entire plant was covered by rust and the center of each lesion turned brown, necrotic, and ruptured over times, eventually causing defoliation. Voucher specimens of infected A. rosea leaves as representative samples have been deposited at Guizhou Normal University (GNU2023LS008). Telia are round in shape, mostly aggregated in mass, with a diameter of 0.28-0.78 mm (0.46 mm, n = 20). They range in color from reddish-brown to dark brown, and are mainly hypophyllous but occasionally formed on the adaxial leaf surface. The teliospores are fusoid with dimensions of 31.3-93.8 × 10.9-21.3 μm (57.5 × 15.1 µm average, n = 50), hyaline or yellowish to light-brown in color, mostly two-celled, with a smooth wall (1.5-3.0 µm) and a thickened apex (3.0-9.0 µm). However, teliospores which are one-, three-, or four-celled with a notch at the apex, are rarely observed. The morphological characteristics of host symptoms and teliospores were similar to those of Puccinia modiolae (Aime and Abbasi 2018; Albu et al. 2019). For phylogenetic analysis, genomic DNA was extracted from the teliospores of infected leaves. To confirm the species-level identification, PCR was performed on the extracted DNA to amplify the ribosomal DNA internal transcribed spacer (ITS) and large subunit (LSU) regions using primer pairs ITS1/ITS4 (Schoch et al. 2012) and NL1/NL4 (Ziemiecki et al. 1990), respectively. The resulting ITS DNA sequence (GenBank accession no. OR607960) showed 100% identity with P. modiolae sequences (OP369291.1), when the query coverage was 100%. The LSU DNA sequence obtained (OR607961.2) shared 99.85% similarity with P. modiolae (MK458702.1). A phylogenetic tree was constructed using MEGA7.0 and the maximum likelihood method based on the ITS and LSU sequences. The fungal isolates collected in this study and several reference sequences of P. modiolae were grouped within a clade that included the isolates reported on A. rosea in Korea (Ryu et al. 2023), with 100% bootstrap support. Pathogenicity testing was conducted by gently pressing spore powder of naturally diseased leaves onto young leaves of three healthy A. rosea plants, with three noninoculated healthy plants serving as controls. The inoculated and noninoculated plants were kept in a growth chamber at the 26°C with a 12 hour light/dark cycle and 80% humidity. After 2 weeks, all inoculated A. rosea plants showed characteristic disease symptoms of rust infection and telia of P. modiolae, while control plants remained symptomless. The pathogen was identical to that observed on the original diseased leaves. The study results indicate that the causal fungus responsible for the disease is P. modiolae, which has been previously reported on Malvaceae plants (Farr and Rossman 2022). To the best of our knowledge, this is the first report of P. modiolae on A. rosea in China. This study will contribute to an increased understanding of the host range of Puccinia modiolae.