Abstract

Epimedium sagittatum (Sieb.et Zucc.) Maxim. is an important material of traditional Chinese medicine because of the rich content of flavonoids that are used to treat osteoporosis, liver cancer, and sexual dysfunction (Liu et al. 2013). A leaf blight was observed on E. sagittatum in Zhumadian City, China (32°58'12" N, 114°37'48" E, continental monsoon climate) in June 2021. Survey indicated that about 18% of the plants were infected in a 266-ha commercial planting area. The initial symptoms were white patches with tan borders, irregular in outline, with small black particles visible on the center of the lesions. In a week or so, patches extended throughout the leaf, and then leaves withered. Thirty leaves with symptoms collected from five different sites were cut into 5×5 mm pieces, and then surface-sterilized with 75% ethanol for 15 s followed by rinsing with double distilled water (ddH2O) three times. The pieces were then disinfested with 0.1% HgCl2 solution for 30 s, and rinsed with ddH2O, then placed onto potato-dextrose agar medium (PDA) and incubated in the dark for 3 d at 28°C. Eight fungal isolates were purified; of these, only the isolate HY2-1 infected the host plant and was selected for further morphological characterization. The colonies of HY2-1 were olive green with loose aerial hyphae on PDA. Conidiophores were single or branched, producing brown conidia in short chains. Conidia were obclavate, obpyriform, or ellipsoidal, 15.9-47.3 µm × 7.6-16.6 µm (n=50) and pale brown or dark brown with a short cylindrical beak at the tip that contained 1-5 transverse septa and 0-4 longitudinal septa. Morphological characteristics of the isolate were identical with those of Alternaria species (Huang et al. 2022). For molecular identification, the internal transcribed spacers (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Weir et al. 2012), major allergen Alt a 1(Alt a 1) and translation elongation factor 1-α gene (TEF) (Lawrence et al. 2013) were amplified and sequenced using the primers ITS4/5, GDF/GDR, Alt-F/R, and EF1-728F/986R, respectively. The results of the sequencing were uploaded to GenBank as ITS (OR418487), GAPDH (OR419792), Alt a 1 (OR419794), and TEF (OR419796), respectively. Phylogenetic analyses were performed by concatenating all the sequenced loci using the Bayesian method in Phylosuite (Zhang et al.2020). The phylogenetic tree indicated that the isolate belongs to the A. alternata clade with a bootstrap value of 75%. The pathogen was identified as A. alternata based on the morphological and molecular results. To satisfy Koch's postulates, a conidial suspension (106 conidia/mL) of the HY2-1 was prepared with ddH2O to infect the healthy plants. Ninety healthy leaves on 30 plants in pots were punctured using a sterilized needle, and then inoculated by spraying the conidial suspension on the wounded leaves in a greenhouse at 25°C and 80% relative humidity. The control plants were sprayed with ddH2O. The plants showed similar symptoms to the original infected plant 15 d after inoculation. The controls showed no symptoms. A pure culture of A. alternata was isolated and identified again as previously described. Leaf blight caused by A. alternata has been reported on Taro (Liu et al. 2020), Toona ciliata (Wang et al. 2023), etc. To our knowledge, this is the first report of E. sagittatum leaf blight caused by A. alternata in China. The results will help to develop effective control strategies for leaf blight on E. sagittatum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call