Abstract Study question To describe lipidomic characteristics of offspring born to polycystic ovary syndrome (PCOS-off) women and assess the associations of clinical phenotypes changes with differential lipids. Summary answer PCOS-off showed specific changes in lipidomics and some differential lipids (e.g., phosphatidylcholines, lysophosphatidylcholine and sphingomyelin) may be the potential markers of aberrant cardiometabolic health. What is known already Polycystic ovary syndrome (PCOS), the most prevalent endocrine disorder characterized by ovulatory dysfunction, hyperandrogenism and polycystic ovarian morphology, affects about 8–13% of women of fertile age. Aberrant metabolic pathophysiological changes and increased pregnancy complications associated with PCOS predispose PCOS patients to have suboptimal intrauterine environments and that may produce a detrimental impact on the cardiometabolic health of their children. Study design, size, duration A total of 141 blood plasma samples from 70 children born to PCOS women (43 girls, 27 boys) and 71 healthy control children (44 girls, 27 boys) were obtained for lipidomics. Participants/materials, setting, methods Blood samples were centrifuged at 2000 rpm, 4 °C for 20 min, and the upper plasma was collected and used for lipid extraction. Then the waters ACQUITY UPLC I-Class system and The Xevo G2-S Q-TOF with an electrospray ionization (ESI) source (Waters, Manchester, UK) was used for chromatographic analysis and mass spectrometry analysis separately. Main results and the role of chance In total, 44 metabolites were found to be significantly altered in PCOS-off, including 8 up-regulated and 36 down-regulated metabolites. After stratified by sex, 44 metabolites were found to express differently in girls born to PCOS women (PCOS-g). 13 metabolites were up-regulated, and 31 metabolites were down-regulated, most of which belong to glycerolipids species. While 46 metabolites were found to express differently in boys born to PCOS women (PCOS-b) with 9 increased metabolites and 35 decreased ones, most of which were glycerophospholipids metabolites. Additionally, significant associations between metabolites changes and weight Z-score as well as high density lipoprotein level were found in PCOS-off. In PCOS-g, triglyceride, low density lipoprotein and high density lipoprotein level were found to be correlated with some metabolites, whereas in PCOS-b, thyroid stimulating hormone and high density lipoprotein were correlated with some lipids. Limitations, reasons for caution Other species of metabolites except lipids are not included in this study. Besides, some potential confounding maternal factors, such as smoking, drinking, breastfeeding etc. were not included due to the lack of data. Wider implications of the findings: The results had broadened our understanding of PCOS-off’s cardiometabolic status and emphasized monitor and special management in this susceptible group of population. Trial registration number Not applicable
Read full abstract